Centro

Createc 3D

    Título

    Del mundo real al mundo virtual

    Temática

    Escáner 3D

    Interrogantes

    ¿Se puede pasar del mundo real al virtual con un clic?

      Materiales

      Escáner 3D

      Ordenador

      Software 

      Introducción

      Se demostrará como se pueden escanear objetos y digitalizarlos.

      Descripción

      Se mostrará el funcionamiento de un dispositivo que se dedica a la recogida de datos mediante cámaras y utiliza esa información para hacer modelos tridimensionales y poder así manipularlos o incluso imprimirlos.

      Con el que se desarrollan principalmente aplicaciones industriales, al cual hemos ampliado la actuación a diversos ámbitos como el de la arqueología, arquitectura, ingeniería y entretenimiento. 

      Podrán observar el escaneado de una persona en directo, y como se realiza el proceso del mismo a bajo coste.

      Cuestión 1

      ¿Que tipos de escáner 3d existen en la actualidad?
      Láser (Triangulación)
      El escáner láser de triangulación 3D es también un escáner activo que usa la luz del láser para examinar el entorno. El haz de luz láser incide en el objeto y se usa una cámara para buscar la ubicación del punto del láser. Dependiendo de la distancia a la que el láser golpee una superficie, el punto del láser aparece en lugares diferentes en el sensor de la cámara.

      Esta técnica se llama triangulación porque el punto de láser, la cámara y el emisor del láser forman un triángulo. La longitud de un lado del triángulo definido por la cámara y el emisor del láser es conocida. El ángulo del vértice del emisor de láser se sabe también. El ángulo del vértice de la cámara (paralaje) puede ser determinado mirando la ubicación del punto del láser en la cámara. Estos tres valores permiten determinar el resto de las dimensiones del triángulo, y por tanto, la posición de cada punto en el espacio.

      La precisión de este sistema de medida puede ser muy elevada (milésimas de milímetro), pero depende del ángulo del vértice opuesto al escáner (cuanto más se aparte de 90º más baja es la precisión), lo que limita el tamaño de la escena a analizar. Dado que ese ángulo depende fuertemente de la distancia entre el emisor láser y la cámara, el aumentar el alcance supone incrementar mucho el tamaño del equipo de medida. En la práctica, el alcance máximo de estos escáneres se limita a 20-30 cm.

      En la mayoría de los casos en lugar de un punto de medida se proyecta una línea que barre la superficie del objeto para acelerar el proceso de adquisición.

      Diferencia de fase

      Este tercer tipo de escáner mide la diferencia de fase entre la luz emitida y la recibida, y utiliza dicha medida para estimar la distancia al objeto. El haz láser emitido por este tipo de escáner es continuo y de potencia modulada.

      El rango y la precisión de este tipo de scáner es intermedio, situándose como una solución entre el largo alcance de los dispositivos de tiempo de vuelo y la alta precisión de los escáneres por triangulación. Su alcance ronda los 200 m en condiciones de poco ruido (baja iluminación ambiente), y su error característico ronda los 2 mm por cada 25 m.

      En algunos modelos el alcance está limitado precisamente por su modo de funcionamiento, ya que al modular el haz con una frecuencia constante, existe ambigüedad en la medida de la distancia proporcional a la longitud de onda de la modulación utilizada.

      La precisión de la medida también depende de la frecuencia utilizada, pero de manera inversa a como lo hace el alcance, por lo cual estos conceptos son complementarios, y se debe encontrar un punto de compromiso entre ambos, o bien utilizar dos frecuencias distintas (multi-frequency-ranging).

      La holografía conoscópica

      Es una técnica interferométrica por la que un haz reflejado en una superficie atraviesa un cristal birrefringente, esto es, un cristal que posee dos índices de refracción, uno ordinario y fijo y otro extraordinadio que es función del ángulo de incidencia del rayo en la superficie del cristal.

      Como resultado de atravesar el cristal obtienen dos rayos paralelos que se hacen interferir utilizando para ello una lente cilíndrica, esta interferencia es capturada por el sensor de una cámara convencional obteniendo un patrón de franjas. La frecuencia de esta interferencia determina la distancia del objeto en el que se proyectó el haz. Esta técnica permite la medición de orificios en su configuración colineal, alcanzando precisiones mejores que una micra. La ventaja de esta técnica es que permite utilizar luz no coherente, esto quiere decir que la fuente de iluminación no tiene porqué ser un láser, la única condición es que sea monocromática.

      Las aplicaciones de esta técnica son muy variadas, desde la ingeniería inversa hasta la inspección de defectos superficiales en la industria del acero a altas temperaturas. Los sensores de holografía conoscópica son fabricados por. La holografía conoscópica fue descubierta por Gabriel Sirat y Demetri Psaltis en el año 1985.

      La luz estructurada

      Los escáneres 3D de luz estructurada proyectan un patrón de luz en el objeto y analizan la deformación del patrón producida por la geometría de la escena. El modelo puede ser unidimensional o de dos dimensiones. Un ejemplo de un un modelo unidimensional es una línea. La línea se proyecta sobre el objeto que se analiza con un proyector de LCD o un láser. Una cámara, desviada levemente del proyector de modelo, mira la forma de la línea y usa una técnica semejante a la triangulación para calcular la distancia de cada punto en la línea. En el caso del modelo de una sola línea, la línea se barre a través del campo del panorama para reunir información de distancia una tira a la vez.

      La luz modulada

      Escáneres 3D de luz modulada emiten una luz continuamente cambiante en el objeto. Generalmente la fuente de luz simplemente cicla su amplitud en un patrón sinodal. Una cámara detecta la luz reflejada y la cantidad que el patrón de luz cambia para determinar la distancia viajada por la luz.

      Pasivos

      Los escáneres pasivos no emiten ninguna clase de radiación por sí mismos, pero en lugar se fía de detectar la radiación reflejada del ambiente. La mayoría de los escáneres de este tipo detectan la luz visible porque es una radiación ya disponible en el ambiente. Otros tipos de radiación, tal como el infrarrojo podrían ser utilizados también. Los métodos pasivos pueden ser muy baratos, porque en la mayoría de los casos estos no necesitan hardware particular.

      Estereoscópicos

      Los sistemas estereoscópicos utilizan el mismo principio de la fotogrametría, utilizando la medida de la paralaje entre dos imágenes para determinar la distancia de cada pixel de la imagen. Emplean generalmente dos cámaras de video, levemente separadas, mirando a la misma escena. Analizando las diferencias leves entre las imágenes vistas por cada cámara, es posible determinar la distancia en cada punto en las imágenes. Este método se basa en la visión estereoscópica humana.

      Silueta

      Estos tipos de escáneres 3D usan bosquejos creados de una sucesión de fotografías alrededor de un objeto tridimensional contra un fondo muy bien contrastado. Estas siluetas se estiran y son cruzadas para formar la aproximación visual de casco del objeto. Con esta clase de técnicas alguna clase de concavidades de un objeto (como el interior de un tazón) no son detectadas.

      Con ayuda del usuario (modelado basado en imagen)

      Hay otros métodos que, basados en la ayuda del usuario para el descubrimiento e identificación de algunas características y formas en un conjunto de retratos diferentes de un objeto son capaces de construir una aproximación del objeto mismo. Esta clase de técnicas son útiles para construir la aproximación rápida de edificios a semejanza de objetos, formados y sencillos. Varios paquetes comerciales están disponibles como iModeller, el Escultor D o RealViz ImageModeler.

      Este tipo de escaneo 3D se basa en los principios de la fotogrametría. Es también algo semejante en la metodología a la fotografía panorámica, excepto que las fotos se toman de un objeto en un espacio tridimensional para replicarlo en vez de tomar una serie de fotos de un punto en un espacio tridimensional para replicar el ambiente circundante.

      Cuestión 2

      ¿Es posible escanear cualquier objeto?

      Si, aunque existen algunas limitaciones dependiendo de la técnicas que utilices, hay algunos que son específicos para piezas más pequeñas y otros que su funcionalidad está más adaptada a objetos grandes como cuerpos, incluso encontramos técnicas de fotografía que nos permiten escanear casas o yacimientos arqueológicos. 

      Cuestión 3

      ¿Me puedo fabricar mi própio escaner?

      Sí, de hecho con el Kinetic o una cámara web, descargando un software libre de internet puedes empezar a hacer las primeras pruebas en tu casa.

      Referencias
      Licencia
      • by-nc-nd.eu_petitReconocimiento - NoComercial - SinObraDerivada (by-nc-nd): No se permite un uso comercial de la obra original ni la generación de obras derivadas.
      Última modificación: viernes, 20 de marzo de 2015, 14:24